Copied to
clipboard

G = C233Dic6order 192 = 26·3

2nd semidirect product of C23 and Dic6 acting via Dic6/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C233Dic6, C24.34D6, C6.12+ 1+4, (C22×C6)⋊5Q8, C6.6(C22×Q8), (C2×C6).27C24, C4⋊Dic33C22, C22⋊C4.86D6, C31(C232Q8), C12.48D43C2, C2.6(D46D6), Dic3⋊C41C22, (C2×Dic6)⋊2C22, (C22×C4).185D6, C2.8(C22×Dic6), C22.5(C2×Dic6), (C2×C12).127C23, Dic3.D41C2, (C23×C6).53C22, C22.69(S3×C23), (C2×Dic3).8C23, (C22×C6).119C23, C23.154(C22×S3), (C22×C12).71C22, C6.D4.85C22, (C22×Dic3).76C22, (C2×C6).49(C2×Q8), (C2×C22⋊C4).18S3, (C6×C22⋊C4).18C2, (C2×C4).133(C22×S3), (C2×C6.D4).22C2, (C3×C22⋊C4).97C22, SmallGroup(192,1042)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C233Dic6
C1C3C6C2×C6C2×Dic3C22×Dic3C2×C6.D4 — C233Dic6
C3C2×C6 — C233Dic6
C1C22C2×C22⋊C4

Generators and relations for C233Dic6
 G = < a,b,c,d,e | a2=b2=c2=d12=1, e2=d6, ab=ba, dad-1=ac=ca, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 584 in 242 conjugacy classes, 111 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, Q8, C23, C23, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C22⋊Q8, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×Dic6, C22×Dic3, C22×C12, C23×C6, C232Q8, Dic3.D4, C12.48D4, C2×C6.D4, C6×C22⋊C4, C233Dic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C24, Dic6, C22×S3, C22×Q8, 2+ 1+4, C2×Dic6, S3×C23, C232Q8, C22×Dic6, D46D6, C233Dic6

Smallest permutation representation of C233Dic6
On 48 points
Generators in S48
(2 36)(4 26)(6 28)(8 30)(10 32)(12 34)(14 47)(16 37)(18 39)(20 41)(22 43)(24 45)
(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 35)(2 36)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19 7 13)(2 18 8 24)(3 17 9 23)(4 16 10 22)(5 15 11 21)(6 14 12 20)(25 38 31 44)(26 37 32 43)(27 48 33 42)(28 47 34 41)(29 46 35 40)(30 45 36 39)

G:=sub<Sym(48)| (2,36)(4,26)(6,28)(8,30)(10,32)(12,34)(14,47)(16,37)(18,39)(20,41)(22,43)(24,45), (13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,35)(2,36)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,18,8,24)(3,17,9,23)(4,16,10,22)(5,15,11,21)(6,14,12,20)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39)>;

G:=Group( (2,36)(4,26)(6,28)(8,30)(10,32)(12,34)(14,47)(16,37)(18,39)(20,41)(22,43)(24,45), (13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,35)(2,36)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,18,8,24)(3,17,9,23)(4,16,10,22)(5,15,11,21)(6,14,12,20)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39) );

G=PermutationGroup([[(2,36),(4,26),(6,28),(8,30),(10,32),(12,34),(14,47),(16,37),(18,39),(20,41),(22,43),(24,45)], [(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,35),(2,36),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19,7,13),(2,18,8,24),(3,17,9,23),(4,16,10,22),(5,15,11,21),(6,14,12,20),(25,38,31,44),(26,37,32,43),(27,48,33,42),(28,47,34,41),(29,46,35,40),(30,45,36,39)]])

42 conjugacy classes

class 1 2A2B2C2D···2I 3 4A4B4C4D4E···4L6A···6G6H6I6J6K12A···12H
order12222···2344444···46···6666612···12
size11112···22444412···122···244444···4

42 irreducible representations

dim1111122222244
type++++++-+++-+
imageC1C2C2C2C2S3Q8D6D6D6Dic62+ 1+4D46D6
kernelC233Dic6Dic3.D4C12.48D4C2×C6.D4C6×C22⋊C4C2×C22⋊C4C22×C6C22⋊C4C22×C4C24C23C6C2
# reps1842114421824

Matrix representation of C233Dic6 in GL8(𝔽13)

120000000
012000000
001200000
000120000
00001000
000001200
00000010
000000012
,
10000000
01000000
00100000
00010000
00001000
00000100
000000120
000000012
,
10000000
01000000
00100000
00010000
000012000
000001200
000000120
000000012
,
012000000
10000000
001210000
001200000
00000100
000012000
000000012
00000010
,
80000000
05000000
001200000
001210000
00000010
00000001
000012000
000001200

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C233Dic6 in GAP, Magma, Sage, TeX

C_2^3\rtimes_3{\rm Dic}_6
% in TeX

G:=Group("C2^3:3Dic6");
// GroupNames label

G:=SmallGroup(192,1042);
// by ID

G=gap.SmallGroup(192,1042);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,758,675,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=1,e^2=d^6,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽