metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊3Dic6, C24.34D6, C6.12+ 1+4, (C22×C6)⋊5Q8, C6.6(C22×Q8), (C2×C6).27C24, C4⋊Dic3⋊3C22, C22⋊C4.86D6, C3⋊1(C23⋊2Q8), C12.48D4⋊3C2, C2.6(D4⋊6D6), Dic3⋊C4⋊1C22, (C2×Dic6)⋊2C22, (C22×C4).185D6, C2.8(C22×Dic6), C22.5(C2×Dic6), (C2×C12).127C23, Dic3.D4⋊1C2, (C23×C6).53C22, C22.69(S3×C23), (C2×Dic3).8C23, (C22×C6).119C23, C23.154(C22×S3), (C22×C12).71C22, C6.D4.85C22, (C22×Dic3).76C22, (C2×C6).49(C2×Q8), (C2×C22⋊C4).18S3, (C6×C22⋊C4).18C2, (C2×C4).133(C22×S3), (C2×C6.D4).22C2, (C3×C22⋊C4).97C22, SmallGroup(192,1042)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊3Dic6
G = < a,b,c,d,e | a2=b2=c2=d12=1, e2=d6, ab=ba, dad-1=ac=ca, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 584 in 242 conjugacy classes, 111 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, Q8, C23, C23, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C2×C22⋊C4, C22⋊Q8, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×Dic6, C22×Dic3, C22×C12, C23×C6, C23⋊2Q8, Dic3.D4, C12.48D4, C2×C6.D4, C6×C22⋊C4, C23⋊3Dic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C24, Dic6, C22×S3, C22×Q8, 2+ 1+4, C2×Dic6, S3×C23, C23⋊2Q8, C22×Dic6, D4⋊6D6, C23⋊3Dic6
(2 36)(4 26)(6 28)(8 30)(10 32)(12 34)(14 47)(16 37)(18 39)(20 41)(22 43)(24 45)
(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 35)(2 36)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19 7 13)(2 18 8 24)(3 17 9 23)(4 16 10 22)(5 15 11 21)(6 14 12 20)(25 38 31 44)(26 37 32 43)(27 48 33 42)(28 47 34 41)(29 46 35 40)(30 45 36 39)
G:=sub<Sym(48)| (2,36)(4,26)(6,28)(8,30)(10,32)(12,34)(14,47)(16,37)(18,39)(20,41)(22,43)(24,45), (13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,35)(2,36)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,18,8,24)(3,17,9,23)(4,16,10,22)(5,15,11,21)(6,14,12,20)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39)>;
G:=Group( (2,36)(4,26)(6,28)(8,30)(10,32)(12,34)(14,47)(16,37)(18,39)(20,41)(22,43)(24,45), (13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,35)(2,36)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,18,8,24)(3,17,9,23)(4,16,10,22)(5,15,11,21)(6,14,12,20)(25,38,31,44)(26,37,32,43)(27,48,33,42)(28,47,34,41)(29,46,35,40)(30,45,36,39) );
G=PermutationGroup([[(2,36),(4,26),(6,28),(8,30),(10,32),(12,34),(14,47),(16,37),(18,39),(20,41),(22,43),(24,45)], [(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,35),(2,36),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19,7,13),(2,18,8,24),(3,17,9,23),(4,16,10,22),(5,15,11,21),(6,14,12,20),(25,38,31,44),(26,37,32,43),(27,48,33,42),(28,47,34,41),(29,46,35,40),(30,45,36,39)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | S3 | Q8 | D6 | D6 | D6 | Dic6 | 2+ 1+4 | D4⋊6D6 |
kernel | C23⋊3Dic6 | Dic3.D4 | C12.48D4 | C2×C6.D4 | C6×C22⋊C4 | C2×C22⋊C4 | C22×C6 | C22⋊C4 | C22×C4 | C24 | C23 | C6 | C2 |
# reps | 1 | 8 | 4 | 2 | 1 | 1 | 4 | 4 | 2 | 1 | 8 | 2 | 4 |
Matrix representation of C23⋊3Dic6 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C23⋊3Dic6 in GAP, Magma, Sage, TeX
C_2^3\rtimes_3{\rm Dic}_6
% in TeX
G:=Group("C2^3:3Dic6");
// GroupNames label
G:=SmallGroup(192,1042);
// by ID
G=gap.SmallGroup(192,1042);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,758,675,570,80,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=1,e^2=d^6,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations